Classifier
# 简介
提供了常用的监督分类分类器。
# dTrees
决策树分类分类器。
函数 | 返回值 |
---|---|
dTrees() | PIEDT分类器 |
# 示例
import pie
from pie import *
Map = pie.Map()
image = pie.Image('user/17090142114/PGDB001/World84').select(["B1","B2","B3"])
featureCollection = pie.FeatureCollection('user/17090142114/PGDB001/WorldROI')
training = image.sampleRegions(featureCollection,["type"],50000)
classifer = pie.dTrees().train(training,"type",["B1","B2","B3"]).getInfo()
resultImage = image.classify(classifer,"classifyA")
visParam = {
'opacity':1,
'uniqueValue':'1,2,3,4',
'palette': 'EAF2F5,000032,1F3600,FAFFC8'
}
Map.addLayer(resultImage,visParam,'DT_result')
Map.setCenter(0,0,0)
Map
# knn
K最近邻分类分类器。
函数 | 返回值 |
---|---|
knn() | PIEKNN分类器 |
# 示例
import pie
from pie import *
Map = pie.Map()
image = pie.Image('user/17090142114/PGDB001/World84').select(["B1","B2","B3"])
featureCollection = pie.FeatureCollection('user/17090142114/PGDB001/WorldROI')
training = image.sampleRegions(featureCollection,["type"],50000)
classifer = pie.knn().train(training,"type",["B1","B2","B3"]).getInfo()
resultImage = image.classify(classifer,"classifyA")
visParam = {
'opacity':1,
'uniqueValue':'1,2,3,4',
'palette': 'EAF2F5,000032,1F3600,FAFFC8'
}
Map.addLayer(resultImage,visParam,'Knn_result')
Map.setCenter(0,0,0)
Map
# normalBayes
正态贝叶斯分类分类器。
函数 | 返回值 |
---|---|
normalBayes() | PIENormalBayes分类器 |
# 示例
import pie
from pie import *
Map = pie.Map()
image= pie.Image('user/17090142114/PGDB001/World84').select(["B1","B2","B3"])
featureCollection= pie.FeatureCollection('user/17090142114/PGDB001/WorldROI')
training= image.sampleRegions(featureCollection,["type"],50000)
classifer= pie.normalBayes().train(training,"type",["B1","B2","B3"], 1, 1)
resultImage = image.classify(classifer,"classifyA")
visParam = {
'opacity':1,
'uniqueValue':'1,2,3,4',
'palette': 'EAF2F5,000032,1F3600,FAFFC8'}
Map.addLayer(resultImage,visParam, "NormalBayes")
Map.setCenter(0,0,0)
Map
# rTrees
随机森林分类分类器。
函数 | 返回值 |
---|---|
rTrees() | PIERTrees分类器 |
# 示例
import pie
from pie import *
Map = pie.Map()
image = pie.Image('user/17090142114/PGDB001/World84').select(["B1","B2","B3"])
featureCollection = pie.FeatureCollection('user/17090142114/PGDB001/WorldROI')
training = image.sampleRegions(featureCollection,["type"],50000)
classifer = pie.rTrees().train(training, "type", ["B1", "B2", "B3"], 100, 1)
resultImage = image.classify(classifer,"classifyA")
visParam = {
'opacity':1,
'uniqueValue':'1,2,3,4',
'palette': 'EAF2F5,000032,1F3600,FAFFC8'
}
Map.addLayer(resultImage,visParam, "RTees")
Map.setCenter(0,0,0)
Map
# svm
SVM(支持向量机)监督分类分类器。
函数 | 返回值 |
---|---|
svm() | PIESVM分类器 |
# 示例
import pie
from pie import *
Map = pie.Map()
image = pie.Image('user/17090142114/PGDB001/World84').select(["B1", "B2", "B3"])
featureCollection = pie.FeatureCollection('user/17090142114/PGDB001/WorldROI')
training = image.sampleRegions(featureCollection, ["type"], 50000)
classifer = pie.svm().train(training, "type", ["B1", "B2", "B3"], 100, 10)
resultImage = image.classify(classifer, "classifyA")
visParam = {
'opacity': 1,
'uniqueValue': '1,2,3,4',
'palette': 'EAF2F5,000032,1F3600,FAFFC8'
}
Map.addLayer(resultImage, visParam, "SVM")
Map.setCenter(0, 0, 0)
Map
# train
监督分类分类器训练。
函数 | 返回值 |
---|---|
train(features,classProperty,inputProperties,subsampling,subsamplingSeed) | 监督分类器训练结果 |
参数 | 类型 | 说明 |
---|---|---|
features | FeatureCollection | 样本点 |
classProperty | String | 分类类别字段 |
inputProperties | List | 分类计算字段 |
subsampling | Float | 未启用 |
subsamplingSeed | Int | 未启用 |
# 示例
import pie
from pie import *
Map = pie.Map()
image= pie.Image('user/17090142114/PGDB001/World84').select(["B1","B2","B3"])
featureCollection= pie.FeatureCollection('user/17090142114/PGDB001/WorldROI')
training= image.sampleRegions(featureCollection,["type"],50000)
classifer= pie.normalBayes().train(training,"type",["B1","B2","B3"], 1, 1)
resultImage = image.classify(classifer,"classifyA")
visParam = {
'opacity':1,
'uniqueValue':'1,2,3,4',
'palette': 'EAF2F5,000032,1F3600,FAFFC8'}
Map.addLayer(resultImage,visParam, "NormalBayes")
Map.setCenter(0,0,0)
Map
有问题,我来改改 (opens new window)
上次更新: 2022/05/25, 07:37:39